What is the start and finish date of the ISRO’s Chandrayaan 3 mission?

Weekendscript Admin
9 Min Read
What’s Chandrayaan-3
Spread the love

Isro’s Chandrayaan is all set to soar towards the moon in its third expedition on Friday in an attempt to put the country in an elite club of nations that accomplished lunar missions with a soft landing.


Here are some key bits of information you’ll need to track Chandrayaan-3:


What’s Chandrayaan-3?
India’s third Moon mission and the second attempting to soft-land on the lunar surface


When is the launch?
Isro has scheduled the launch at 2.35pm Friday (July 14) from its spaceport in Sriharikota


Which rocket is being used?
GSLV-Mk3 or LVM3, the same as the one used in Chandrayaan-2, but with improved engineering


How can you watch it?
If you have registered to be at the public gallery in Sriharikota, you can watch the launch as it happens from there, the view is excellent.
If you haven’t registered to be at the public gallery, keep an eye out on www.isro.gov.in, where Isro will post a link to the live telecast closer to the launch date.


What does Chandrayaan-3 contain?
A propulsion module, which will transport the lander (Vikram) and rover (Pragyan) to the lunar orbit and separate. It carries one payload to study Earth from Moon, which will send data back to ground stations.
Vikram has four payloads, including a passive payload from NASA, and Pragyan has two payloads. Together, they will conduct in-situ experiments on the lunar surface to help us understand Moon better.

Chandrayaan-3 more details:-

Chandrayaan-3 is a follow-on mission to Chandrayaan-2 to demonstrate end-to-end capability in safe landing and roving on the lunar surface. It consists of Lander and Rover configuration. It will be launched by LVM3 from SDSC SHAR, Sriharikota. The propulsion module will carry the lander and rover configuration till 100 km lunar orbit. The propulsion module has Spectro-polarimetry of Habitable Planet Earth (SHAPE) payload to study the spectral and Polari metric measurements of Earth from the lunar orbit.

Lander payloads: Chandra’s Surface Thermophysical Experiment (ChaSTE) to measure the thermal conductivity and temperature; Instrument for Lunar Seismic Activity (ILSA) for measuring the seismicity around the landing site; Langmuir Probe (LP) to estimate the plasma density and its variations. A passive Laser Retroreflector Array from NASA is accommodated for lunar laser ranging studies.

Rover payloads: Alpha Particle X-ray Spectrometer (APXS) and Laser Induced Breakdown Spectroscope (LIBS) for deriving the elemental composition in the vicinity of landing site.

More DetailsChandrayaan-3GalleryAppraisal

Chandrayaan-3 consists of an indigenous Lander module (LM), Propulsion module (PM) and a Rover with an objective of developing and demonstrating new technologies required for Inter planetary missions. The Lander will have the capability to soft land at a specified lunar site and deploy the Rover which will carry out in-situ chemical analysis of the lunar surface during the course of its mobility. The Lander and the Rover have scientific payloads to carry out experiments on the lunar surface. The main function of PM is to carry the LM from launch vehicle injection till final lunar 100 km circular polar orbit and separate the LM from PM. Apart from this, the Propulsion Module also has one scientific payload as a value addition which will be operated post separation of Lander Module. The launcher identified for Chandrayaan-3 is GSLV-Mk3 which will place the integrated module in an Elliptic Parking Orbit (EPO) of size ~170 x 36500 km.

The mission objectives of Chandrayaan-3 are:

  1. To demonstrate Safe and Soft Landing on Lunar Surface
  2. To demonstrate Rover roving on the moon and
  3. To conduct in-situ scientific experiments.

To achieve the mission objectives, several advanced technologies are present in Lander such as,

  1. Altimeters: Laser & RF based Altimeters
  2. Velocimeters: Laser Doppler Velocimeter & Lander Horizontal Velocity Camera
  3. Inertial Measurement: Laser Gyro based Inertial referencing and Accelerometer package
  4. Propulsion System: 800N Throttleable Liquid Engines, 58N attitude thrusters & Throttleable Engine Control Electronics
  5. Navigation, Guidance & Control (NGC): Powered Descent Trajectory design and associate software elements
  6. Hazard Detection and Avoidance: Lander Hazard Detection & Avoidance Camera and Processing Algorithm
  7. Landing Leg Mechanism.

To demonstrate the above said advanced technologies in earth condition, several Lander special tests have been planned and carried out successfully viz.

  1. Integrated Cold Test – For the demonstration of Integrated Sensors & Navigation performance test using helicopter as test platform
  2. Integrated Hot test – For the demonstration of closed loop performance test with sensors, actuators and NGC using Tower crane as test platform
  3. Lander Leg mechanism performance test on a lunar simulant test bed simulating different touch down conditions.

The overall specifications for Chandrayaan-3 is provided below:

Sl No.ParameterSpecifications
1.Mission Life (Lander & Rover)One lunar day (~14 Earth days)
2.Landing Site (Prime)4 km x 2.4 km 69.367621 S, 32.348126 E
3.Science PayloadsLander:Radio Anatomy of Moon Bound Hypersensitive ionosphere and Atmosphere (RAMBHA)Chandra’s Surface Thermo physical Experiment (ChaSTE)Instrument for Lunar Seismic Activity (ILSA)Laser Retroreflector Array (LRA) Rover:Alpha Particle X-Ray Spectrometer (APXS)Laser Induced Breakdown Spectroscope (LIBS) Propulsion Module:Spectro-polarimetry of HAbitable Planet Earth (SHAPE)
4.Two Module ConfigurationPropulsion Module (Carries Lander from launch injection to Lunar orbit)Lander Module (Rover is accommodated inside the Lander)
5.MassPropulsion Module: 2148 kgLander Module: 1752 kg including Rover of 26 kgTotal: 3900 kg
6.Power generationPropulsion Module: 758 WLander Module: 738W, WS with BiasRover: 50W
7.CommunicationPropulsion Module: Communicates with IDSNLander Module: Communicates with IDSN and Rover. Chandrayaan-2 Orbiter is also planned for contingency link.Rover: Communicates only with Lander.
8.Lander SensorsLaser Inertial Referencing and Accelerometer Package (LIRAP)Ka-Band Altimeter (KaRA)Lander Position Detection Camera (LPDC)LHDAC (Lander Hazard Detection & Avoidance Camera)Laser Altimeter (LASA)Laser Doppler Velocimeter (LDV)Lander Horizontal Velocity Camera (LHVC)Micro Star sensorInclinometer & Touchdown sensors
9.Lander ActuatorsReaction wheels – 4 nos (10 Nms & 0.1 Nm)
10.Lander Propulsion SystemBi-Propellant Propulsion System (MMH + MON3), 4 nos. of 800 N Throttleable engines & 8 nos. of 58 N; Throttleable Engine Control Electronics
11.Lander MechanismsLander legRover Ramp (Primary & Secondary)RoverILSA, Rambha & Chaste PayloadsUmbilical connector Protection Mechanism,X- Band Antenna
12.Lander Touchdown specificationsVertical velocity: ≤ 2 m / secHorizontal velocity: ≤ 0.5 m / secSlope: ≤ 120

The objectives of scientific payloads planned on Chandrayaan-3 Lander Module and Rover are provided below:

Sl. NoLander PayloadsObjectives
1.Radio Anatomy of Moon Bound Hypersensitive ionosphere and Atmosphere (RAMBHA)Langmuir probe (LP)To measure the near surface plasma (ions and electrons) density and its changes with time
2.Chandra’s Surface Thermo physical Experiment (ChaSTE)To carry out the measurements of thermal properties of lunar surface near polar region.
3.Instrument for Lunar Seismic Activity (ILSA)To measure seismicity around the landing site and delineating the structure of the lunar crust and mantle.
4.LASER Retroreflector Array (LRA)It is a passive experiment to understand the dynamics of Moon system.
Sl. NoRover PayloadsObjectives
1.LASER Induced Breakdown Spectroscope (LIBS)Qualitative and quantitative elemental analysis & To derive the chemical Composition and infer mineralogical composition to further our understanding of Lunar-surface.
2.Alpha Particle X-ray Spectrometer (APXS)To determine the elemental composition (Mg, Al, Si, K, Ca,Ti, Fe) of Lunar soil and rocks around the lunar landing site.
Sl. NoPropulsion Module PayloadObjectives
1.Spectro-polarimetry of HAbitable Planet Earth (SHAPE)Future discoveries of smaller planets in reflected light would allow us to probe into variety of Exo-planets which would qualify for habitability (or for presence of life).

Three dimensional views of Chandrayaan-3 modules are provided below:

Share This Article
Leave a comment

Leave a Reply

Your email address will not be published. Required fields are marked *